Inferring protein interaction from sequence co-evolution

Sequence variations, protein interactions, and diseases

Teresa Przytycka NIH / NLM / NCBI

 Protein interaction and sequence coevolution

Interacting proteins are expected to coevolve to ensure proper binding

Inferring protein interaction from the co-evolution principle

[Goh et al 2000, Pazos and Valencia 2001]

Mirrortree Method:

Evolutionary vector

Distance Matrix

Inferring protein interaction from the co-evolution principle

Mirrortree Method:

Compute correlation

Simple idea but lot's of questions...

 How to separate co-evolution due to common speciation history form coevolution due to function?

Kann et. al. Proteins 2007

 Is the co- evolution signal distributed uniformly over the sequence? Between binding site only?

Kann et. al. JMB 2009

Jothi et. al. JMB 2007

Predicting Interaction specificity

Challenges

 How to separate co-evolution due to common speciation history form coevolution due to function?

Kann et. al. Proteins 2007

 Is the co- evolution signal distributed uniformly over the sequence? Between binding site only? Kann et. al. JMB 2009

Jothi et. al. JMB 2007

Predicting Interaction specificity

Do binding sites co-evolve more tightly?

Binding sites are important but not the only contributor of the co- evolutionary signal

Predicting interacting domains

Given interacting multi-domain proteins domains that are in contact

Jothi et. al. JMB 2007

Mirror tree approach can be used to recognize interacting domains

RESULTS:

In 64% cases, the domain pair with highest correlation was interacting (55% expected by chance)

Jothi et. al. JMB 2007

Predicting interacting domains

Given interacting multi-domain proteins domains that are in contact

Jothi et. al. JMB 2007

Given protein-protein interaction network domains that are in contact

Guimaraes et. al. Genome Biology 2008

 Protein interaction and sequence coevolution

 Predicting domain interaction from protein interaction networks

Parsimony approach

Assumption: Protein interactions are mediated by domain interactions

Hypothesis: Interactions evolved in most parsimonious way

Method: Find the smallest set of domain pairs whose interaction would explain all protein interactions in the network

Linear programming formulation

Objective function

(representing parsimony assumption):

minimize
$$\sum_{D_i,D_j} x_{ij}$$

Interacting domains pairs – domains pairs with $X_{ii} = I$

- Additional problems to solve: Model the noise in the network Estimate p-values

Results compared to previous methods: Identifying interacting domain pair in interacting protein pair

 Protein interaction and sequence coevolution

 Predicting domain interaction from protein interaction networks

 Combining genetic sequence variation, genome wide expression profile and protein interaction to infer pathways dysregulated in complex diseases

Genetic variations in individuals affects gene expression level

Genotype variations

Huang et.al Bioinformatics 2009

Bringing PPI network and other high throughput networks

Associations of genes expressed differently in disease /control groups are primary target

Putative causal mutations

Representative target disease genes

Uncovering causal genes and dys-regulated pathways

Causal genes

Kim et.al. submitted

Acknowledgments

Former lab members

Katia Guimaraes (associate professor, Brazil)
Raja Jothi (currently PI at NIEHS)
Elena Zotenko (currently Max Planck Institute)

Current lab members

Dong Yeon Cho Yoo-ah Kim Yang Huang Damian Wojtowicz Jie Zheng Collaborators
Maricel Kann UMBC

Evolutionarily conserved regions help separate functional co-evolution from co-evolution due common speciation history

Compute conservation profile

Use conserved positions only

Additional correction using previously mentioned methods

